Schachcomputer.info Community
Prev Vorheriger Beitrag   Nächster Beitrag Next
  #27  
Alt 18.08.2023, 09:11
Benutzerbild von dreihirn
dreihirn dreihirn ist offline
Brikett
 
Registriert seit: 27.08.2020
Ort: Jena
Land:
Beiträge: 116
Abgegebene Danke: 60
Erhielt 108 Danke für 44 Beiträge
Aktivitäten Langlebigkeit
0/20 5/20
Heute Beiträge
0/3 ssssss116
AW: Das 3n+1 / 5n+1 Problem

Mir ist jetzt eine allgemeine Vermutung klar geworden.
Betrachtet wird ein System, was auf ungeraden Zahlen
k(1), k(2), ... k(s) basiert. Dabei ist s eine natürliche Zahl
ungleich 0.

Es wird bei einer ungeraden natürlichen Zahl n losgerechnet.
Jede Runde hat s Etappen.
1. Aus n wird k(1)*n +1. Dann wird runterhalbiert.
2. Sei m das Ergebnis der vorherigen Etappe. Bilde k(2)*m +1
und halbiere dann runter.
...
Etappe s: Sei r das Ergebnis der vorherigen Etappe. Bilde
k(s)*r + 1 und halbiere runter.

Das Ergebnis ist der Ausgangswert der nächsten Runde.



Sei B= k(1) * k(2) * ... * k(s).
Der entscheidende Wert ist jetzt C = B / (4^s).

Vermutung:
Ist C < 1, läuft jeder Startwert in einen von endlich vielen Zykeln.
Ist C > 1, läuft fast jeder Startwert (im Sinne von asymptotischer Dichte 1)
nach unendlich.
C=1 kann nicht vorkommen, da B ungerade sein muss.

Begründung: Runterhalbieren besteht im Durchschnitt aus zwei Schritten.
Gleichzeitig wird in einer Etappe mit k(i) multippliziert. Also liefert die
Etappe im Schnitt Faktor k(i) / 4.

Beispiele:
s=1 und k(1)=3 ist der klassische Collatz-Fall.
s=2 und k(1)=3, k(2)=5 steht oben im Thread, von Gilgamesch gerechnet.

Allgemein dürften Instanzen mit kleinem C-Wert schnelles Abstürzen
in die Zykel geben, und C-Werte nahe 1 ganz langsames. Ein vermutetes
Beispiel mit sehr hohen Zwischenwerten
s=3, k= (3,3,7). Dafür ist der C-Wert
3*3*7 / 64 = 63/64.

Viele Grüße, Ingo.
__________________
Fließendes Wasser kennt keinen Kampf (Takagawa Kaku; alter Go-Meister)
Mit Zitat antworten
 

Themen-Optionen
Ansicht

Forumregeln
Du bist nicht berechtigt, neue Themen zu erstellen.
Du bist nicht berechtigt, auf Beiträge zu antworten.
Du bist nicht berechtigt, Anhänge hochzuladen.
Du bist nicht berechtigt, deine Beiträge zu bearbeiten.

BB code ist An
Smileys sind An.
[IMG] Code ist An.
HTML-Code ist An.

Gehe zu

Ähnliche Themen
Thema Erstellt von Forum Antworten Letzter Beitrag
Hilfe: Mondial II - Problem Eckehard Kopp Technische Fragen und Probleme / Tuning 5 09.05.2016 22:48
Frage: MM I-Problem Eckehard Kopp Technische Fragen und Probleme / Tuning 1 26.03.2016 03:09
Frage: Problem mit einem Problem udo Teststellungen und Elo Listen / Test positions and Elo lists 10 29.05.2011 01:25
Frage: Fidelity-Problem Eckehard Kopp Technische Fragen und Probleme / Tuning 1 29.09.2006 08:36


Alle Zeitangaben in WEZ +2. Es ist jetzt 12:18 Uhr.



Powered by vBulletin (Deutsch)
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
©Schachcomputer.info